
Implementing an Efficient Task to Build Data Sets
for Datamining Analysis.

B.K.Manasa1, H.Venkateswara Reddy2

*M.Tech-SE, Dept.,Of CSE., Vardhaman College Of Engg, Hyderabad ,India
**Professor & Head Of Dept.,CSE.,Vardhaman College Of Engg,Hyderabad ,India

Abstract- Data mining is the process of discovering
actionable information from large sets of data. Preparing a
data set for analysis is generally the most time consuming
task in a data mining project, requiring many complex sql
queries, joining tables and aggregating columns. Existing sql
aggregations have limitations to prepare data sets because
they return one column per aggregated group. This paper
presents Methodology of Horizontal aggregations using a
method to generate sql code to return aggregated columns in
a horizontal tabular layout, returning a set of numbers
instead of one number per row. There are three fundamental
variations to evaluate horizontal aggregations. CASE:
Exploiting the programming CASE construct; SPJ: Based on
standard relational algebra operators (SPJ queries); PIVOT:
Using the PIVOT operator, which is offered by some DBMSs.
The proposed methodology shows evaluating horizontal
aggregations is a challenging and interesting problem and
introduces alternative methods and optimizations for their
efficient evaluation.

Index terms: aggregation; data preparation; pivoting; SQL

I. INTRODUCTION
In data mining the common terms are point-dimension.
Statistics literature generally uses observation-variable.
Machine learning research uses instance-feature. Most
algorithms require as input a data set with a horizontal
layout, with several records and one variable or dimension
per column. That is the case with models like clustering,
classification, regression and PCA.

A. Motivation
As mentioned above, building a suitable data set for data
mining purposes is a time-consuming task. This task
generally requires writing long SQL statements or
customizing SQL code if it is automatically generated by
some tool. There are two main ingredients in such SQL
code: joins and aggregations we focus on the second one.
The most widely-known aggregation is the sum of a
column over groups of rows. Some other aggregations
return the average, maximum, minimum or row count over
groups of rows. There exist many aggregation functions
and operators in SQL. Unfortunately, all these
aggregations have limitations to build data sets for data
mining purposes. The main reason is that, in general, data
sets that are stored in a relational database (or a data
warehouse) come from On-Line Transaction Processing
(OLTP) systems where database schemas are highly
normalized. But data mining, statistical or machine
learning algorithms generally require aggregated data in
summarized form. Based on current available functions
and clauses in SQL, a significant effort is required to

compute aggregations when they are desired in a
crosstabular (horizontal) form, suitable to be used by a data
mining algorithm. Such effort is due to the amount and
complexity of SQL code that needs to be written, optimized
and tested.. Standard aggregations are hard to interpret when
there are many result rows, especially when grouping
attributes have high cardinalities. To perform analysis of
exported tables into spreadsheets it may be more convenient
to have aggregations on the same group in one row (e.g. to
produce graphs or to compare data sets with repetitive
information). OLAP tools generate SQL code to transpose
results (sometimes called PIVOT).Transposition can be
more efficient if there are mechanisms combining
aggregation and transposition together. With such
limitations in mind, we propose a new class of aggregate
functions that aggregate numeric expressions and transpose
results to produce a data set with a horizontal layout.
Functions belonging to this class are called horizontal
aggregations. Horizontal aggregations represent an extended
form of traditional SQL aggregations, which return a set of
values in a horizontal layout (somewhat similar to a
multidimensional vector), instead of a single value per row.

 B.Typical Data Mining Problems
Let us consider data mining problems that may be solved by
typical data mining or statistical algorithms, which assume
each non-key column represents a dimension, variable
(statistics) or feature (machine learning). Stores can be
clustered based on sales for each day of the week. On the
other hand, we can predict sales per store department based
on the sales in other departments using decision trees or
regression. PCA analysis on department sales can reveal
which departments tend to sell together. We can find out
potential correlation of number of employees by gender
within each department. Most data mining algorithms (e.g.
clustering, decision trees, regression, correlation analysis)
require result tables from these queries to be transformed
into a horizontal layout. We must mention there exist data
mining algorithms that can directly analyze data sets having
a vertical layout (e.g. in transaction format) [14], but they
require reprogramming the algorithm to have a better I/O
pattern and they are efficient only when there many zero
values (i.e. sparse matrices).
The rest of the paper is organized as follows: Section II
gives a glance on Horizontal Aggregations. Section III
describes the recent research. Section IV describes the
proposed process work. Section V illustrates the
experimental evaluation and finally Section VI concludes
the paper.

B.K.Manasa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6198-6201

www.ijcsit.com 6198

II .HORIZONTAL AGGREGATIONS
The new class of aggregations that have similar

behavior to SQL standard aggregations, but which produce
tables with a horizontal layout. In contrast, we call
standard SQL aggregations vertical aggregations since
they produce tables with a vertical layout. Horizontal
aggregations just require a small syntax extension to
aggregate functions called in a SELECT statement.
Alternatively, horizontal aggregations can be used to
generate SQL code from a data mining tool to build data
sets for data mining analysis.

Fig. 1 – Input table (a), traditional vertical aggregation

(b), and horizontal aggregation (c)

As can be seen in fig. 1, input table has some sample data.
Traditional vertical sum aggregations are presented in (b)
which is the result of SQL SUM function while (c) holds
the horizontal aggregation which is the result of SUM
function.

III. RECENT RESEARCH
First discuss research on extending SQL code for data
mining processing. We briefly discuss related work on
query optimization. We then compare horizontal
aggregations with alternative proposals to perform
transposition or pivoting. There exist many proposals that
have extended SQL syntax. The closest data mining
problem associated to OLAP processing is association rule
mining . SQL extensions to define aggregate functions for
association rule mining are introduced. In this case the
goal is to efficiently compute item set support.
Unfortunately, there is no notion of transposing results
since transactions are given in a vertical layout.
Programming a clustering algorithm with SQL queries is
explored in , which shows a horizontal layout of the data
set enables easier and simpler SQL queries. The PIVOT
and CASE methods avoid joins as well. Our SPJ method
proved horizontal aggregations can be evaluated with
relational algebra, exploiting outer joins, showing our
work is connected to traditional query optimization.
Traditional query optimizers use a tree based execution
plan, but there is work that advocates the use of hyper-
graphs to provide a more comprehensive set of potential
plans. This approach is related to our SPJ method. Even
though the CASE construct is an SQL feature commonly
used in practice optimizing queries that have a list of
similar CASE statements has not been studied in depth
before. Research on efficiently evaluating queries with
aggregations is extensive. We focus on discussing
approaches that allow transposition, pivoting or cross-
tabulation. The importance of producing an aggregation

table with a cross-tabulation of aggregated values is
recognized in the context of cube computations. An
operator to unpivot a table producing several rows in a
vertical layout for each input row to compute decision trees
was proposed. Several SQL primitive operators for
transforming data sets for data mining were introduced ; the
most similar one to ours is an operator to transpose a table,
based on one chosen column. The TRANSPOSE operator is
equivalent to the unpivot operator, producing several rows
for one input row. An important difference is that, compared
to PIVOT, TRANSPOSE allows two or more columns to be
transposed in the same query, reducing the number of table
scans. Therefore, both UNPIVOT and TRANSPOSE are
inverse operators with respect to horizontal aggregations.
Later, SQL operators to pivot and unpivot a column were
introduced (now part of the SQL Server DBMS); this work
took a step beyond by considering both complementary
operations: one to transpose rows into columns and the other
one to convert columns into rows (i.e. the inverse
operation). There are several important differences with our
proposal though: the list of distinct to values must be
provided by the user, whereas ours does it automatically;
output columns are automatically created; the PIVOT
operator can only transpose by one column, whereas ours
can do it with several columns, the PIVOT operator requires
removing unneeded columns (trimming) from the input
table for efficient evaluation (a well-known optimization to
users), whereas ours an work directly on the input table.
Horizontal aggregations are related to horizontal percentage
aggregations. Finally, our present article is a significant
extension of the preliminary work presented, where
horizontal aggregations were first proposed.

IV.PROPOSED PROCESS WORK

1 SPJ Method
This method is based on the relational operators only. In this
method one table is created with vertical aggregation for
each column.
Then all such tables are joined in order to generate a table
containing horizontal aggregations.
2. PIVOT Method
This aggregation is based on the PIVOT operator available
in RDBMS. As it can provide transpositions, it can be used
to evaluate horizontal aggregations. PIVOT operator

B.K.Manasa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6198-6201

www.ijcsit.com 6199

determines how many columns are required to hold
transpose and it can be combined with GROUP BY clause.
3. CASE Method
This construct is built based on the existing CASE
construct of SQL. Based on Boolean expression one of the
results is returned by CASE construct.
 It is same as projection/aggregation query from relational
point of view. Based on some conjunction of conditions
each non key value is given by a function. Here two basic
strategies to compute horizontal aggregations. The first
strategy is to compute directly from input table. The
second approach is to compute vertical aggregation and
save the results into temporary table. Then that table is
further used to compute horizontal aggregations.

V.EXPERIMENTAL EVALUATION
The environment used for the development of prototype
web based application that demonstrates the three
horizontal aggregations include Visual Studio 2010, and
SQL Server 2008. The former is used to build front end
application with web based interface while the latter is
used to store data permanently. The technologies used
include ASP.NET which is meant for developing web
services and web applications, and AJAX (Asynchronous
JavaScript and XML) for rich user experience.

Data Flow Diagram

 Data Base Input(SPJ,Pivot,Case)

Output

Programming language used in C# which is an object
oriented high level programming language. The result of
horizontal aggregation SPJ is shown in fig

Fig. 1 – Results of SJP aggregation

As can be seen in fig. 1, the results are through the SPJ
operation that results in data in horizontal layout. Data in
this layout can be considered as data set that can be used for
further data mining operations.

Fig. 2 – Result of Pivoting Aggregation

As can be seen in fig. 2, the results are through the PIVOT
operation that results in data in horizontal layout. Data in
this layout can be considered as data set that can be used for
further data mining operations.

Fig. 3 – Result of CASE Aggregation

As can be seen in fig. 2, the results are through the CASE
operation that results in data in horizontal layout. Data in
this layout can be considered as data set that can be used for
further data mining operations.

VI.CONCLUSION
In this paper, we presented a methodology of Horizontal
aggregations using a method to generate sql code to return
aggregated columns in a horizontal tabular layout, returning
a set of numbers instead of one number per row. It show
evaluating horizontal aggregations is a challenging and
interesting problem and introduced alternative methods and
optimizations for their efficient evaluation. Introduced a
new class of extended aggregate functions, called horizontal
aggregations which help preparing data sets for data mining
and OLAP cube exploration. From a query optimization
perspective, we proposed three query evaluation methods.
The first one (SPJ) relies on standard relational operators.
The second one (CASE) relies on the SQL CASE construct.
The third (PIVOT) uses a built-in operator in a commercial
DBMS that is not widely available. The proposed
horizontal aggregations can be used as a database method to

System

Display
Results(Studentattend
ence,Pivot,Case)

B.K.Manasa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6198-6201

www.ijcsit.com 6200

automatically generate efficient SQL queries with three
sets of parameters: grouping columns, subgrouping
columns and aggregated column. Efficiently evaluating
horizontal aggregations using left outer joins presents
opportunities for query optimization. Secondary indexes
on common grouping columns, besides indexes on
primary keys, can accelerate computation.The proposed
horizontal aggregations do not introduce conflicts with
vertical aggregations, but we need to develop a more
formal model of evaluation.

REFERENCES
[1] G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph based reorderings

of outer join queries with complex predicates. In ACM SIGMOD
Conference, pages 304–315, 1995.

[2] J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and C.
Kleinerman. .NET database programmability and extensibility in
Microsoft SQL Server. In Proc. ACM SIGMOD Conference, pages
1087–1098, 2008.

[3] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman. Non-
stop SQL/MX primitives for knowledge discovery. In ACM KDD
Conference, pages 425–429, 1999.

[4] E.F. Codd. Extending the database relational model to capture
more meaning. ACM TODS, 4(4):397–434, 1979.

[5] C. Cunningham, G. Graefe, and C.A. Galindo-Legaria. PIVOT and
UNPIVOT: Optimization and execution strategies in an RDBMS.
In Proc. VLDB Conference, pages 998–1009, 2004.

[6] C. Galindo-Legaria and A. Rosenthal. Outer join simplification and
reordering for query optimization. ACM TODS, 22(1):43–73,
1997.

[7] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems:
The Complete Book. Prentice Hall, 1st edition, 2001.

[8] G. Graefe, U. Fayyad, and S. Chaudhuri. On the efficient gathering
of sufficient statistics for classification from large SQL databases.
In Proc. ACM KDD Conference, pages 204–208, 1998.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab and
sub- total. In ICDE Conference, pages 152–159, 1996.

[10] J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, San Francisco, 1st edition, 2001.

[11] G. Luo, J.F. Naughton, C.J. Ellmann, and M. Watzke. Locking
protocols for materialized aggregate join views. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 17(6):796–807,
2005.

[12] C. Ordonez. Horizontal aggregations for building tabular data sets.
In Proc. ACM SIGMOD Data Mining and Knowledge Discovery
Workshop, pages 35–42, 2004.

B.K.Manasa et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6198-6201

www.ijcsit.com 6201

